DST-Labs:

Collaboration and Version Control using Git on an Offline Server

Anders Humlum* Bjgrn Bjgrnsson Meyer! Jonathan Leisner?

December 3, 2021

Abstract

This is a manual for project collaboration and version control using Git on servers without

internet access like those supplied by Statistics Denmark.

Contents

1 Introduction

2 Command-Line Shell
3 Git Setup

4 Creating A New Project Repository
4.1 Folder Structures

5 Adding a User to an Existing Project

6 Workflows
6.1 The shared Folder
6.2 Example of Workflow with Git

7 Add-Ons
7.1 Run Codes with a Script
7.2 Jupyter Notebooks and Python
7.3 Git in the shared Folder
7.4 Text Editors with Git Integration

*University of Chicago, humlum@uchicago.edu.
tUniversity of Copenhagen, bjorn.bjornsson.meyer@econ.ku.dk.
HUniversity of Copenhagen, jl@econ.ku.dk.

ot

ENEEN B e R e NI 2]

mailto:humlum@uchicago.edu
mailto:bjorn.bjornsson.meyer@econ.ku.dk
mailto:jl@econ.ku.dk

1 Introduction

As economic researchers, we increasingly find ourselves collaborating on computer code and data
files. Every step of our work, from data cleaning, statistical analysis, model simulation, or the
formatting of outputs involves writing, debugging, and sharing of code. Yet, few of us have
ever received any formal training in computer science. Most of what we do is self-taught or
passed from researcher to researcher. In Code and Data for the Social Sciences: A Practitioner’s
Guide, Gentzkow and Shapiro take invaluable steps toward breaking bad coding habits. We
greatly recommend their guidelines, although it is difficult not to take their points personally.

The purpose of this manual is to facilitate collaboration and version control with the Git soft-
ware on the research servers at Statistics Denmark (DST). Most empirical economists interested
in Denmark will at some point use the vast opportunities in the register data at DST.

On a typical DST server, collaborators can access the same folders, but many things are made
difficult by the lack of opportunities to install software or access the internet. For example, the
lack of internet access prevents the use of online hosting services for remote repositories like
GitHub.

For many researchers, including ourselves, the current situation is that several people work
on the same folders and files without any system of version control. Researchers instead resort to
copying the code files to a separate folder at important milestones. Git offers many advantages
both in terms of version control and collaboration between researchers.

Version control with Git works with a repository where all the codes are stored. A user
checks out the codes from the repository, works on them, and at some point checks them back
in. This creates the waypoints of the version control. The defining feature of Git is that the
version control is “distributed”, such that each user has their own local version of the code base.
This delivers a host of advantages for us. Most of us have probably at some point worked as a
RA and received the following instructions from a senior: “you can find it in my folder - please
don’t change or run any codes!”. Needless to say, with such a system for file sharing, small
human mistakes can jeopardize a whole research project.

Git solves these problems as new users will get their own distributed version of the code
base to use, and potentially build onto, before adding it back to the main branch. Furthermore,
Git allows different users to run and alter the same codes simultaneously, solving the usual
coordination issues with conflicting copies when researchers collaborate around the same codes.

As part of this manual, we supply templates of our folder structure and other useful hacks

in the spirit of the much more advanced GSLab Manual.!

2 Command-Line Shell

Throughout this manual, the user executes some basic shell commands. We recommend and
supply the syntax for the Git Bash shell. Git Bash is a Unix-based terminal for Windows that
usually comes with the Git software installation. It is also possible to use Command Prompt,

Powershell, or a range of other shells on the servers of DST.

LOur folder template can be downloaded here.

https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://git-scm.com
https://github.com/gslab-econ/ra-manual/wiki
https://www.andershumlum.com/s/dst_labs.zip

A convenient way to launch Git Bash is to right-click in any folder folder and select ”Git Bash
Here”, see Figure 1. This way, Git Bash will launch with the folder as the Working Directory,

sidestepping the following shell navigation commands:

Print the current working directory

pwd

#List content of the working directory

1s

Change the working directory

cd <path_name>

Change the working directory to a subfolder
cd ./<subfolder name>

Move one level up in folder structure

cd ../

Figure 1: Git Bash

+ New Volume (B} » ToolsQA
-
MName Date modified Type Size
Tt
View 3
Sort by 3
Group by 3
i MINGWS4:/c/Users/hmz320/Deskiop - o x
Customize this folder...
= $ git status
Paste fatal: not a git reposi or the parent directories): .git
Paste shortcut
Undo Rename Ctrl+Z S |
|IL] Open as Brackets project
Git GUI Here
(Git Bash Here]
Share with 3
New 3
Properties

Note: Launching Git Bash and executing a Git Status command in the current working directory (desktop).

3 Git Setup

The Internet contains an ocean of resources on Git and version control. Start with this intro-
ductory video. Useful beginner tutorials can be found here and here. Chapters 1 to 3 of the Pro
Git Book. Hands-on tutorial here.

Many of the online guides are provided by cloud-based hosting services for remote reposi-
tories, such as GitHub or Bitbucket. We will, of course, not use these hosting services as we
work on a server without internet access. Instead, we will set up our own “remote” (“bare”)
repository on the server, located in a centralized project directory, that each of us will clone to
our user work directories.

Before a new user starts to use Git, she must type the following in Git Bash:

https://www.youtube.com/watch?v=HVsySz-h9r4
https://www.youtube.com/watch?v=HVsySz-h9r4
http://try.github.io/
https://guides.github.com/introduction/git-handbook/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
http://swcarpentry.github.io/git-novice/
https://guides.github.com/introduction/git-handbook/
https://www.atlassian.com/git

Configure Git user
git config --global user.name <your_username>

git config --global user.email <your_email_address@example.com>

4 Creating A New Project Repository

In this section, we describe how to create a new project folder from our template, initialize
a local/”bare” Git repository, and set up the first user folder.? The following series of Bash
commands will copy folder structures and settings from our template, and initiate the new Git

repository. We describe the folder structure below.

1. Create the project folder (project_name), and copy the “shared” template folder into it?

cp -r <path>/Projects/template/shared <path>/Projects/project_name

2. Initialize a bare repository® in the new project folder (write out full paths, no relative
paths with "../” here)

git init --bare <path>/Projects/project_name/repo.git

3. Create the project folder in the user’s folder and clone the repo

git clone <path>/Projects/project_name/repo.git <path2>/user_name/project_name

4. Copy the content of the user template folder into the user’s project folder

cp -r <path>/Projects/template/user/. <path2>/user_name/project_name

5. In this final step, we commit the changes in the user folder, and push them to repository (to include

settings for additional users)

cd <path2>/user_name/project_name #Navigates to the user folder
git add . #Stages all files for Git
git commit -m "Initialized repository with the DST-Labs template"

git push origin master

4.1 Folder Structures

Your user folder should now look like depicted in Figure 2. We adhere to the folder structure
in Gentzkow and Shapiro (2014), where subproject folders are organized into build and analysis
directories, which in turn are organized into code, temp, and output folders. The .git is
where the Git software works, and should not be touch by the user. The .gitignore and
.gitattributes files are for the user to supply settings for Git. We provide these in the

templates. In particular, we suggest making Git ignore the tracking of all data and output

2This section is based on Stack Overflow (scroll down to the answer by ’adelphus’).

3_r means recursive and includes subfolders. If the bash directory is <path>, it can be substituted with the
relative path ”./”

4Tt is conventional to give bare repositories the extension .git.

https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://stackoverflow.com/questions/7632454/how-do-you-use-git-bare-init-repository/31590993##31590993

formats, like .csv or .pdf. Omitted from Figure 2, we also have a readme.txt file in all the
empty folders in the tree. It is good practice to document throughout the folder structure, and

it secures that the otherwise empty folders will be tracked in Git.
Figure 2: User Folder

. .\Users\your_name\
project_name\

| _build\

code\

temp\

output\

| _analysis\

code\

temp)\

output\

| .git\> Created by Git clone.

| _readme.txt
| .gitignorep» Untracked files to ignore by Git.

| .gitattributesp Path-specific Git settings.

We now turn to the project folder, depicted in Figure 3. The repo.git folder is the central
Git repository, and should never be touched by users. The shared folder should hardly be
touched either, or there should at least not be run codes in it. We will describe the ideas and

use of the shared folder in section 6 on workflows.

Figure 3: Project Folder

..\Projects\
project_name\
repo.git\P» Git repository.

shared\» Not under version control.

Ereadme.txt
build\

input\» Raw data inputs.

temp\
output\» Data outputs for use as inputs to

users’ code.

5 Adding a User to an Existing Project

To initiate a new user, we simply clone the Git repository in the project folder. This is the same
procedure as cloning a repository from GitHub, the only difference being that we supply the
path to the project repository instead of an URL to GitHub. The user creates a folder with the
projects name, and runs Step 3 of Section 4 with this command:

git clone ../Projects/project_name/repo.git ../Users/your_name/project_name

6 Workflows

6.1 The shared Folder

As the name suggests, the shared folder contains files that are shared between users and thus not
distributed to each user’s personal folder. It is placed on the server in a folder accessible to all users.
The folder is mainly intended for large data files that we, out of storage concerns, do not want to
maintain distributed copies of. It is also the most natural place to keep all raw data inputs to the
project. Furthermore, we also keep transformations of raw data that are too time-consuming to execute
in shared. In our case, pulling data from registers and transforming it can easily take more than a
day. The shared folder is confined to building data sets, not conducting any analysis on these. For this
reason, the template for shared does not contain an analysis subfolder. Furthermore, we do not run
codes located in the shared folder; these are all distributed to the users’ build/code folders. A good
reason for not keeping code in shared is that the folder is not under version control through Git. That
said, it might be worthwhile to expand version control to the data files in shared. We suggest this as an

add-on in Section 7.

6.2 Example of Workflow with Git

Section 3 lists a handful of online tutorials for Git. Here is an example of a common workflow with Git

where a subproject is finalized in a new branch of the code development.

1. Set user work folder for project as current working directory

right-click and launch Git Bash in ../Users/<your-name>/<project-name>

2. Update list of remote branches

git remote update

3. Create branch for subproject

git branch <branch-name>

4. Switch to branch for subproject

git checkout <branch-name>

5. Whenever a subtask is completed, make a commit®

Stage files
git add .
Commit changes

git commit -m "<Content of completed subtask for commit>"

6. Whenever a task of a subproject is completed, push to branch

git pull origin <branch-name> # Not relevant if first push to branch

git push -u origin <branch-name> # Push to subproject branch

7. When subproject is finalized, merge branch onto master

5Here, we stage the entire work folder. Other times, you will only want to commit specific files that relate to
the completed subtask.

8. Delete subproject branch

7 Add-Ons

7.1 Run Codes with a Script

It is useful to be able to run a whole build process or analysis from the beginning to the end at once.
Often it will cover many different files and without a cookbook it can be difficult for a new collaborator
to replicate. To complicate things, the steps often uses different scripts, potentially in different folders,
like SAS scripts for retrieving data, python scripts for transforming data, etc.

We provide the template "run.sh” for a shell script in our Add-ons folder that executes a series of

scripts after double-clicking. It contains the following syntax:®

7.2 Jupyter Notebooks and Python

Jupyter Notebooks is a great way to work with data interactively, and document the processes for
collaborators. Jupyter integrates many languages, but here we focus on Python. The notebooks can be
used as an intermediate step before producing Python code to run, or they can serve as end-products in
the form of nice-looking report.

Jupyter is usually invoked by entering ”jupyter notebook” in some shell window. On the DST server,
it is recommended to use the corresponding Anaconda Prompt as it makes sure Jupyter opens in the
user’s chosen root folder. To make Jupyter Notebook open in your current folder, you can place the

windows command prompt file "open__jupyter_here.cmd” in your folder and double-click. It contains:

The problem with Python notebooks (.Ipynb) and Git is that there is a ton of meta-data in the
notebook, making it difficult to compare changes in Git. If you do not need the features of a notebook,

we recommend a Python script (.py). If not, we suggest the following workaround:

SWe write the full path since SAS is not added to the Windows environment on the server. Python is and can
launch with its name.

1. End all notebooks with a line that converts the current notebook to a Python script with the same

name.

!Jypyter nbconvert --to script notebook_name.ipynb

2. Stage and commit both the .ipynb and .py files.

3. You can then use the notebooks as usual, and use the .py files for shell runs and Git code comparison.

7.3 Git in the shared Folder

In some situations, it can be useful to have version control of the data files in the shared. These are not
covered above, as they are not distributed and tracked with Git. This is probably unnecessary in most
cases outside DST, where you have full control with the raw input data files. A problem that researchers
face at DST is that the registers we pull raw data from are sometimes are revised. Often you want to
pull new data to get the latest available year of the registers. Here, it would be nice to be able to check
whether something else unexpectedly has changed since the previous version.

An ad-hoc solution is to run Git separately and undistributed in the shared folder:

#launch Git Bash:
right-click in the shared folder and open Git Bash.
#Inititialize a regular Git repository:
git init
In this setup, it is important that users commit to this Git system whenever they update files in the
shared folder, for example pulling updated raw data from the registers. This can be done from the user

folder by double-clicking on the shell script shared commit.sh containing:

cd "<project folder>\shared"
git add .

git commit -m "Stage and commit from user dir"

7.4 Text Editors with Git Integration

A modern text editor for code writing has many advantages. One is that the Git system can be integrated
and enable you to stage and commit without opening Git Bash. Popular choices are Visual Studio Code,
Atom, and Sublime Text. The full functionalities of these editors are somewhat limited at DST’s remote

server. We use Visual Studio Code, and the Git integration works well.

	Introduction
	Command-Line Shell
	Git Setup
	Creating A New Project Repository
	Folder Structures

	Adding a User to an Existing Project
	Workflows
	The shared Folder
	Example of Workflow with Git

	Add-Ons
	Run Codes with a Script
	Jupyter Notebooks and Python
	Git in the shared Folder
	Text Editors with Git Integration

